The kappa-deleting element. Germline and rearranged, duplicated and dispersed forms

نویسندگان

  • W B Graninger
  • P L Goldman
  • C C Morton
  • S J O'Brien
  • S J Korsmeyer
چکیده

Human light chain genes are used in a kappa before lambda order. Accompanying this hierarchy is the rearrangement of a kappa-deleting element (Kde) which eliminates the kappa locus before lambda gene rearrangement. In approximately 60% of rearrangements the Kde recombines at a conserved heptamer within the J kappa-C kappa intron. We demonstrated that aberrant V/J rearrangements possessing apparent "N" nucleotides existed 5' to the J kappa-Kde rearrangements. This suggests that the Kde may selectively eliminate nonfunctional V/J alleles. A kappa-producing cell that displayed the unusual finding of lambda gene rearrangement demonstrated a rearranged Kde. This rearrangement was a V kappa/Kde recombination and the heptamer-11 bp spacer-nonamer flanking the V kappa is the target site of the Kde 40% of the time. The mouse possesses a counterpart to the Kde (recombining sequence [RS]) and the highly conserved regions surround the heptamer-spacer-nonamer signals. No complete protein product was predicted from the germline Kde near its break-point and no consistent fusion product was predicted from either the V/Kde or V/J-Kde rearrangements. A distal portion of the Kde is duplicated and is present at 2q11 as well as 2p11. The evolutionary conservation of the kappa-elimination event, the duplication and maintenance of the Kde indicates that it has a function. A portion of the Kde may still prove to encode a trans-acting factor that directly affects lambda rearrangement. A certain role for the Kde is its site-specific rearrangement, which destroys ineffective kappa genes and sets the stage for lambda gene utilization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracing the pre-B to immature B cell transition in human leukemia cells reveals a coordinated sequence of primary and secondary IGK gene rearrangement, IGK deletion, and IGL gene rearrangement.

The BCR-ABL1 kinase expressed in acute lymphoblastic leukemia (ALL) drives malignant transformation of pre-B cells and prevents further development. We studied whether inhibition of BCR-ABL1 kinase activity using STI571 can relieve this differentiation block. STI571 treatment of leukemia patients induced expression of the Ig L chain-associated transcription factors IRF4 and SPIB, up-regulation ...

متن کامل

Biallelic Germline Transcription at the κ Immunoglobulin Locus

Rearrangement of antigen receptor genes generates a vast array of antigen receptors on lymphocytes. The establishment of allelic exclusion in immunoglobulin genes requires differential treatment of the two sequence identical alleles. In the case of the kappa immunoglobulin locus, changes in chromatin structure, methylation, and replication timing of the two alleles are all potentially involved ...

متن کامل

Amino acids at the site of V kappa-J kappa recombination not encoded by germline sequences

Murine V kappa-J kappa recombination is characterized by a maintenance of size at the site of recombination and the use of nucleic acids found only in germline sequences. This is in contrast to heavy chain VH-D-JH assembly where random nucleotides are added at the recombination sites to produce considerable size variation, even though the heptamer/nonomer recombination sequences are identical i...

متن کامل

Induced kappa receptor editing shows no allelic preference in a mouse pre-B cell line.

B cell Ag receptor editing is a process that can change kappa antigen recognition specificity of a B cell receptor through secondary gene rearrangements on the same allele. In this study we used a model mouse pre-B cell line (38B9) to examine factors that might affect allelic targeting of secondary rearrangements of the kappa locus. We isolated clones that showed both productive and nonproducti...

متن کامل

Rearranged immunoglobulin heavy chain variable region (VH) pseudogene that deletes the second complementarity-determining region.

We have cloned two rearranged heavy chain variable region (VH) genes from the IgG-producing human cell line CESS. The VH gene, which is linked to the mu chain constant region (C mu) gene, has two deletions at residues 45-62 and 82A-90, the former of which corresponds closely to the second complementarity-determining region (CDR2). These results could indicate that translocation of CDR2 occurred...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 167  شماره 

صفحات  -

تاریخ انتشار 1988